• Technology news

  • Challenges and Lessons of

  • Implementing a Real-Time Drilling

  • Advisory System

Challenges and Lessons of Implementing a Real-Time Drilling Advisory System

investors: Published on Journal of Petroleum Technology, February 1, 2018

This paper discusses the technical challenges related to implementing a rigsite, real-time drilling advisory system and current solutions to these challenges. The system uses a data-driven response-surface model based on physics-based calculations to optimize rate of penetration (ROP) while minimizing drilling-vibration dysfunction with regard to lateral (whirl) and torsional (stick/slip) vibrational modes. Minimizing these vibrations is important to mitigate bit damage that can lead to reduced ROP and increased bit trips.

Technical Overview

The system is a rigsite software application that should be deployed in view of the driller. Fig. 1 above shows a driller-cabin deployment.

The software contains capabilities for real-time surface drilling-data acquisition, drilling-performance estimation, vibration analysis, surface trends for drilling performance, and drill-off-test guidance for drilling optimization. The system primarily serves as an open-loop advisory tool but retains capabilities for closed-loop autodriller and topdrive control. The user interface provides the rigsite personnel with drilling-performance surface trends (e.g., ROP, drilling efficiency, and stick/slip vibration), bit aggressiveness and depth-of-cut (DOC) calculations, and drilling-parameter set-point recommendations on the basis of the surface trends.

Data Input and Output. The system operates on 1-second data provided from the electronic data-recording equipment. Input data consist of data channels included among standard or spare Well Information Transfer Specification (WITS) Record 1 items—block height, weight on bit (WOB), rotary speed, mud-flow rate, hole depth, bit depth, torque, and differential pressure.

This paper discusses the technical challenges related to implementing a rigsite, real-time drilling advisory system and current solutions to these challenges. The system uses a data-driven response-surface model based on physics-based calculations to optimize rate of penetration (ROP) while minimizing drilling-vibration dysfunction with regard to lateral (whirl) and torsional (stick/slip) vibrational modes. Minimizing these vibrations is important to mitigate bit damage that can lead to reduced ROP and increased bit trips.

Technical Overview

The system is a rigsite software application that should be deployed in view of the driller. Fig. 1 above shows a driller-cabin deployment.

The software contains capabilities for real-time surface drilling-data acquisition, drilling-performance estimation, vibration analysis, surface trends for drilling performance, and drill-off-test guidance for drilling optimization. The system primarily serves as an open-loop advisory tool but retains capabilities for closed-loop autodriller and topdrive control. The user interface provides the rigsite personnel with drilling-performance surface trends (e.g., ROP, drilling efficiency, and stick/slip vibration), bit aggressiveness and depth-of-cut (DOC) calculations, and drilling-parameter set-point recommendations on the basis of the surface trends.

Data Input and Output. The system operates on 1-second data provided from the electronic data-recording equipment. Input data consist of data channels included among standard or spare Well Information Transfer Specification (WITS) Record 1 items—block height, weight on bit (WOB), rotary speed, mud-flow rate, hole depth, bit depth, torque, and differential pressure.

Credits

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 187447, “Challenges and Lessons From Implementing a Real-Time Drilling Advisory System,” by Benjamin J. Spivey, SPE, Gregory S. Payette, SPE, and Lei Wang, SPE, ExxonMobil Upstream Research Company; Jeffrey R. Bailey, SPE, ExxonMobil Development Company; Derek Sanderson, XTO Energy; and Stephen W. Lai, SPE, Behtash Charkhand, SPE, and Aaron Eddy, SPE, Pason Systems, prepared for the 2017 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 9–11 October. The paper has not been peer reviewed.

Go to Article >

Market Data copyright © QuoteMedia.  Data delayed 15 minutes.  Terms of Use V2.